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The physiological noise in 3D image acquisition is shown to depend strongly on the sampling scheme.
Five sampling schemes are considered: Linear, Centric, Segmented, Random and Tuned. Tuned acquisition
means that data acquisition at k-space positions k and �k are separated with a specific time interval. We
model physiological noise as a periodic temporal oscillation with arbitrary spatial amplitude in the phys-
ical object and develop a general framework to describe how this is rendered in the reconstructed image.
Reconstructed noise can be decomposed in one component that is in phase with the signal (parallel) and
one that is 90� out of phase (orthogonal). Only the former has a significant influence on the magnitude of
the signal. The study focuses on fMRI using 3D EPI. Each k-space plane is acquired in a single shot in a
time much shorter than the period of the physiological noise. The above mentioned sampling schemes
are applied in the slow k-space direction and noise propagates almost exclusively in this direction. The
problem then, is effectively one-dimensional. Numerical simulations and analytical expressions are pre-
sented. 3D noise measurements and 2D measurements with high temporal resolution are conducted. The
measurements are performed under breath-hold to isolate the effect of cardiac-induced pulsatile motion.
We compare the time-course stability of the sampling schemes and the extent to which noise propagates
from a localized source into other parts of the imaging volume. Tuned and Linear acquisitions perform
better than Centric, Segmented and Random.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

3D k-space acquisition has a number of advantages over 2D.
With large stacks the signal-to-noise ratio (SNR) is improved. The
voxels are better defined than 2D voxels, which have a non-rectan-
gular profile in the slice-select direction. Furthermore, a 3D isotro-
pic data set can be reconstructed in arbitrary planes. 3D acquisition
is used in 3D echo-planar imaging (EPI) [1,2], which is the main
interest of the present paper, but also in steady-state free preces-
sion [3], and PRESTO [4]. Furthermore, it is popular in compressed
sensing since the virtues of this technique increase with the
dimensionality of the acquisition k-space [5].

In functional MRI, the total noise is often dominated by physio-
logical rather than thermal noise [6,7]. The physiological noise le-
vel increases proportionally to the signal intensity [6]. Hence, the
total SNR as a function of the thermal SNR approaches asymptoti-
cally a maximum attainable value.

The most prominent sources of physiological noise are breath-
ing and cardiac-induced pulsatile motion that appear as quasi-
periodic oscillations [8]. In addition, there are fluctuations in the
resting brain with frequencies lower than 0.1 Hz [9]. This can be
ll rights reserved.
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used to investigate brain connectivity, but appears as noise in par-
adigm-based functional imaging.

Respiration induces approximately global phase shifts that can
be compensated with techniques such as correction of dynamic
off-resonance in k-space [10] or real-time B0 shimming [11]. Car-
diac-induced pulsatile motion has local effects and is therefore
more difficult to correct. This problem is the focus of the present
paper.

Although physiological noise has been studied extensively for
2D acquisition [6,12–15], less is known about its effects in 3D.
An important difference between 2D and 3D acquisition is that a
single shot 2D slice can be read out in a time shorter than the typ-
ical period of the physiological noise, Tphys, which is approximately
one second for cardiac-induced motion. This means that cardiac-
induced noise can be reduced by band-stop filtering of the time
series or by retrospective correction techniques [8,16]. Such tech-
niques cannot be applied to a 3D cube, since it is usually read
out in a period that includes several heart beats.

The origins and characteristics of cardiac-induced physiological
noise signals with 2D EPI sampling have been investigated [17–19].
Effects on phase images have also been reported in other studies
[20,21]. Important noise sources are pulsative contraction and
expansion of ventricles and large blood vessels, pulsating cere-
bro-spinal fluid (CSF) flow and blood flow.

http://dx.doi.org/10.1016/j.jmr.2011.06.012
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The purpose of the present paper is to examine how the mani-
festations of cardiac-induced physiological noise with 3D acquisi-
tions depend on the way k-space is traversed. This is something
that, to our knowledge, has not been investigated previously. We
analyze noise propagation for five sampling schemes. We define
a model for periodic signals with arbitrary spatial amplitudes. This
model is general and applicable to, but not limited to, physiological
noise signals. The model is analyzed numerically and, in part, ana-
lytically. We also conduct human brain measurements that we
interpret in light of the results of the mathematical analysis.

2. Theory

The sampling scheme is the way in which k-space is traversed.
Fig. 1 shows five possibilities. We restrict the discussion to a one-
dimensional model. This is adequate for 3D EPI-based sequences
where a k-space plane is read out in a time much shorter than
the period of the cardiac-induced physiological noise signal. Noise
is then propagated mainly in the slowest k-space direction. In
Fig. 1, each circle represents one plane in k-space.

2.1. Noise model

The amplitude of the cardiac-induced pulsatile motion has a
strong spatial dependence. It is greatest in CSF and in the vicinity
of the major vessels. The temporal oscillation is quasi-periodic.
As a first order approximation, we assume perfect periodicity with-
in the time interval required for the acquisition of one volume.
With an exception for arrhythmic patients, this is reasonable when
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Fig. 1. Sampling schemes for a one-dimensional model with 32 k-space planes. The Seg
circle represents one plane in k-space.
the volume time is not too long (typically a few seconds) compared
to the period of the physiological noise (typically one second). The
noise measurements described in the Results section justify a mod-
el with localized noise sources and periodic oscillations.

Mathematically, we model physiological noise as a periodic
temporal oscillation with an amplitude that is given by an arbitrary
spatial function, h(z). The temporal oscillation is assumed to be
independent of spatial position, i.e. the model is separable. The
temporal oscillation is denoted g(t) and satisfies the periodicity
condition g(t) = g(t + Tphys). In the numerical model described in
section Experimental setup, h(z) is chosen as a Gaussian, that is,
we consider a localized noise source.

The total signal, stotal(z, t), is the sum of a static, underlying sig-
nal, S(z), a time-dependent, physiological noise signal, p(z, t), and
white, thermal noise e, i.e.

stotalðz; tÞ ¼ SðzÞ þ pðz; tÞ þ e: ð1Þ

The static signal consists of a magnitude part and a phase,

SðzÞ ¼ MðzÞ exp½iuðzÞ�: ð2Þ

The phase depends on factors such as local magnetic field offset and
bulk motion. The phase drift is usually small on the time scale set by
the volume acquisition time, hence it is assumed to be a function of
the position only. Unlike thermal noise, physiological noise is a part
of the physical object that is being imaged. The factors that deter-
mine the phase for the static signal will therefore affect the physi-
ological noise in a similar fashion. We hence assume that the phase
u(z) is also present in the physiological noise. The full expression
for the physiological noise is then
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mented scheme is shown with Nseg = 4 segments. In terms of 3D acquisition, each
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Fig. 2. Physiological noise, the corresponding oscillating k-space representation
and the reconstructed physiological noise. (a) The physiological noise signal at five
instants in time. The temporal period Tphys of this signal is one second, which is a
typical value for cardiac noise. The bold line shows the spatial function h(z), which
is a Gaussian with unit strength and width 5 mm centered at z = 20 mm. (b) and (c)
The physiological noise signal in k-space at the same instants in time. The k-space
function oscillates with the same period as the physiological noise signal. The bold
lines in (b) and (c) show the Fourier transform of h(z). Assuming that the
background phase u(z) equals zeros, the signal in (a) is real and the k-space signal
possesses conjugate symmetry. (d) and (e) The reconstructed noise signal for four
consecutive volumes with volume time Tvol = 2.24 s. The sampling scheme is
Centric. The period of the reconstructed signal, which is longer than Tphys, depends
on the ratio Tvol/Tphys.
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pðz; t; t0Þ ¼ exp½iuðzÞ�hðzÞgðt � t0Þ; ð3Þ

where the offset t0 in the temporal function will vary across consec-
utive volumes as a function of Tphys and the acquisition time for one
volume, Tvol. The increase from one volume to the next is given by

Dt0 ¼ Tvol mod Tphys: ð4Þ

This equation assumes perfect periodicity. With quasiperiodic oscil-
lations the evolution of t0 will become less predictable. The spatial
function h(z) is real-valued by convention, whereas the temporal
function g(t) can be real, imaginary or complex. This depends on
the nature of the physiological noise, which could be quasiperiodic
pulsatile flow, tissue motion or periodic variations in the B0 field
(which induces phase variations). Since the Fourier transform is lin-
ear, each term in Eq. (1) can be treated separately. We shall be con-
cerned with the physiological noise, Eq. (3).

The temporal oscillation in Eq. (3) can be decomposed in a Fou-
rier series,

gðtÞ ¼
X1

n¼�1
Gn exp

2pin
Tphys

t
� �

; ð5Þ

where Gn are the Fourier components. The DC component, G0, is
zero by construction since it can be included as a part of the back-
ground, static signal, S(z). A simple special case is pure harmonic
oscillation, where Gn = 0 for jnjP 2.

The k-space representation of the physiological noise at time t is
given by the spatial Fourier transform of Eq. (3)

Pðk; t; t0Þ ¼ Ffexp½iuðzÞ�hðzÞggðt � t0Þ; ð6Þ

where F denotes Fourier transformation (our Fourier convention is
given in Appendix A). Note that the k-space function oscillates with
the same period as the physiological noise signal. In a measure-
ment, k-space is filled with samples taken at specific instants in
time. This introduces a modulation of the measured k-space that
depends on the sampling scheme. The position in k-space, k, is a
function of the sampling time, t. The function k(t) can be inverted
to express t as a function of k, t(k). This introduces a k dependence
in the temporal function g(t), Eq. (5). Combining Eqs. (5) and (6), we
obtain a general expression for the sampled k-space representation
of the physiological noise

PSðk; t0Þ ¼ Ffexp½iuðzÞ�hðzÞg
X1

n¼�1
Gn exp

2pin
Tphys

ðtðkÞ � t0Þ
� �

: ð7Þ

Note the subscript ‘‘S’’ that indicates a function as it appears after
sampling. In the context of 3D fMRI, k should be interpreted as the po-
sition along the slow k-space axis, usually kz. Taking the inverse spa-
tial Fourier transform of this expression, we obtain the physiological
noise in image space after sampling and reconstruction

pSðz; t0Þ ¼ F�1fPSðk; t0Þg: ð8Þ

The time offset t0 varies according to Eq. (4). It is essential to note
the difference between the physiological noise signal p(z, t, t0),
which represents a physical object, and pS(z, t0) which is its appear-
ance after sampling and reconstruction. It is only the latter that af-
fects our images. Fig. 2 shows an example of a physiological noise
signal, the corresponding oscillating k-space representation, and
the reconstructed signal for a Gaussian spatial function h(z).

Vector addition of the static signal with a reconstructed noise
component that is in phase with the static signal has a much larger
effect on the magnitude of the summed signal than a noise compo-
nent that is 90� out of phase with the signal. A component that is in
phase with the signal will be referred to as parallel and a compo-
nent 90� out of phase as orthogonal. The physical noise signal itself
can have parallel and orthogonal components and the recon-
structed signal can have parallel and orthogonal components. A
parallel (orthogonal) component in the physical signal does not
necessarily translate into a parallel (orthogonal) component in
the reconstructed signal. This is explained in the following section.
To find the parallel and orthogonal parts of a signal we divide by
exp[iu(z)] and calculate the real and imaginary parts respectively.
In the absence of a background phase (i.e. u(z) = 0) parallel is
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equivalent to real and orthogonal is equivalent to imaginary. If the
static signal is much larger than the noise signal, then an orthogo-
nal oscillation will appear approximately as a phase oscillation
with little effect on the magnitude.

2.2. Properties of the sampling schemes

We give a short description and motivation for the various sam-
pling schemes. Although we limit the discussion to Cartesian sam-
pling along the slow axis, each k-space plane can be read out with a
non-Cartesian scheme, e.g. spiral.

Linear and Segmented sampling are the standard ways of tra-
versing k-space. For these sampling schemes we can find analytic
expressions for the appearance of the physiological noise in image
space after sampling and reconstruction (see Appendix A).

Random, incoherent sampling is considered firstly to examine
the effect of noise when coherent noise build-up is being sup-
pressed and secondly because it is the sampling scheme that is
effectively implied in compressed sensing. The average behavior
in closed form is given in Appendix A.

Centric sampling is considered because it minimizes the parallel
component of the reconstructed noise signal pS if the temporal part
g(t) of the physiological noise signal p is imaginary. (The latter re-
quires G�n = Gn with all Gn imaginary or G�n ¼ �Gn with all Gn real
in Eq. (5).) For simplicity we assume u(z) = 0 and get

Pðk; t; t0Þ ¼ HðkÞgðt � t0Þ: ð9Þ

Now, consider the inversion symmetry in k-space. With Centric
sampling k and �k are acquired approximately at the same time.
Hence, the value of the imaginary temporal function is approxi-
mately the same, e.g. ic with c real. We then have

PSðk; t0Þ ¼ icHðkÞ
PSð�k; t0Þ ¼ icHð�kÞ ¼ icH�ðkÞ;

ð10Þ

where the conjugate symmetry H(�k) = H⁄(k) is fulfilled because
h(z) is a real function. Eq. (10) implies that PSð�k; t0Þ ¼ �P�Sðk; t0Þ,
i.e. the k-space associated with the physiological noise possesses
conjugate asymmetry. The reconstructed signal from an imaginary
noise component is therefore imaginary (i.e. orthogonal, since
u(z) = 0). Equivalently, if the temporal signal is real, the signal after
reconstruction will be real.

Tuned sampling will minimize the parallel component of the
reconstructed noise if the temporal part of the physiological noise
signal is real and if it satisfies the symmetry requirement

gðt þ Tphys=2Þ ¼ �gðtÞ; ð11Þ

The data acquisition at k and �k are now separated by Tphys/2.
Hence we find (still assuming u(z) = 0)

PSðk; t0Þ ¼ cHðkÞ;
PSð�k; t0Þ ¼ �cHð�kÞ ¼ �cH�ðkÞ:

ð12Þ

This implies that PSð�k; t0Þ ¼ �P�Sðk; t0Þ, which means that the real
(parallel) physiological noise signal will be rendered imaginary
(orthogonal) after sampling and reconstruction. Likewise, an imag-
inary noise signal will become real in the reconstructed image.

3. Experimental

3.1. Numerical simulations

Physiological noise was simulated numerically. We constructed
the sampled k-space and the sampled image using Eqs. (7) and (8)
respectively. The Fourier operation was a discrete and finite ver-
sion of Eq. (13). We used a FOV of 200 mm with matrix 128. The
spatial function was a Gaussian with unit strength and width
5 mm centered at z = 20 mm (see Fig. 2a). We assumed no spatial
phase variation (u(z) = 0). The volume acquisition time was
Tvol = 2.24 s and the period of the physiological noise was Tphys = 1 s
(corresponding to a heart rate of 60 beats per minute). The time
offset t0 assumed several values in the interval j0,Tphysi. We calcu-
lated both the real and imaginary parts of the signal, which, since
u(z) = 0, correspond to the parallel and orthogonal noise compo-
nents respectively.

3.2. Measurements

The experiments were performed on a Siemens TIM Trio 3T
whole-body clinical scanner (Siemens Healthcare, Erlangen, Ger-
many). The subjects were six healthy volunteers (age 27 ± 5 years)
whose informed consent was sought and obtained. The experiment
was conducted in accordance with the ethical guidelines of our
hospital. To focus solely on cardiac effects, the measurements were
performed during breath-hold.

We conducted 2D gradient-echo, EPI single-slice measurements
with high temporal resolution (70 ms). We acquired 550 frames
and calculated both magnitude and phase. These measurements
were used to calculate averaged, absolute value noise spectra and
to characterize the signal in the complex plane. For four volunteers
(no. 1, 2, 3 and 6), we acquired a transversal slice that contained
the ventricles and then a slice containing only brain tissue posi-
tioned superior to the ventricles. CSF flow out of the slice between
excitation and readout was negligible, since the slice thickness di-
vided by the echo time corresponds to a velocity of 0.12 m/s which
is much faster than CSF flow. For one volunteer (no. 5), we acquired
seven 2D slices. The purpose was to locate the spatial origin of the
physiological noise.

We also performed 3D, whole-brain measurements with the
sampling schemes discussed in Theory. The 3D sequences were
programmed using Siemens’ IDEA package. 32 transversal k-space
planes were read out with single shot echo-planar acquisition. The
readout patterns in the 3D phase encoding (‘‘slow’’) direction are
shown in Fig. 1. The number of segments in the Segmented scheme
was Nseg = 4. The delay between k and �k in the Tuned scheme was
0.5 s. This matches a cardiac period of 1 s, which corresponds to 60
beats per minute. We conducted measurements with 70 ms spac-
ing between the excitation pulses, giving a volume time of
2240 ms. 16 volumes were recorded. This was done with FH as
the slow direction for volunteers no. 1, 2, 3 and 4, and with LR as
the slow direction for volunteer no. 2. We also performed measure-
ments with 125 ms spacing between excitation pulses (giving a
volume time of 4000 ms) and FH as the slow direction. We then re-
corded 9 volumes, and performed two runs to improve the statis-
tics. This was done for volunteers no. 2 and 5.

In all measurements, 2D as well as 3D, the voxel size was
3.4 mm isotropic, which is a typical value for gradient echo blood
oxygen-level dependent (BOLD) fMRI. The in-plane matrix was
64 � 64, the read-out bandwidth was 3005 Hz/pixel and the echo
time was 27 ms. We employed gradient echo sequences with gra-
dient spoiling for all measurements. The flip angle was 20�. The
readout time for one k-space plane was approximately 50 ms.
The cardiac-induced physiological noise is frozen out on this time
scale, and noise propagates mainly in the slow k-space direction.
Hence the problem is effectively one-dimensional.

3.3. Postprocessing

The images were normalized by the thermal noise level, which
was estimated from several regions of interest (ROIs) well sepa-
rated from the object and its ghosts. We suppressed contributions
from outside the head by calculating a noise mask that was based
on the mean signal intensity in the Linear 3D cube. Voxels with
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mean intensity lower than twice the thermal noise level were ex-
cluded from the analysis. The five outermost slices on each side in
the slow direction were also excluded due to fold-in artifacts. The
total temporal variation, tSD, was calculated voxelwise as the stan-
dard deviation of the voxel intensity along the temporal direction.
The first four of the 16 volumes were discarded to ensure steady
state conditions. We also calculated the volume fraction that was
severely affected by physiological noise, defined as the fraction of
voxels with tSD higher than 1.5 times the thermal noise level.

4. Results

4.1. Numerical simulations

Fig. 3 shows simulated traces of the reconstructed signal
pS(z, t0) for all sampling schemes with either parallel or orthogonal
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mented sampling is a complicated function of the acquisition
parameters. As explained in Theory, Centric sampling suppresses
orthogonal noise and Tuned sampling suppresses parallel noise.
This behavior is observed in Fig. 3. For Linear sampling with paral-
lel, harmonic noise (as in Fig. 3), Eq. (22) implies that the orthog-
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simulations with a strong, parabolic phase variation (results not
shown). The characteristic behavior of the sampling schemes
was not affected.

4.2. Measurements

The results of the 2D high temporal resolution measurements
are shown in Figs. 4–6. Fig. 4 shows the spatial origin of the phys-
iological noise. Seven slices, starting in the basal part of the brain
and ending superior to the ventricles, are shown. The main sources
of noise are found in the basal parts of the brain and in the ventri-
cles. Very little noise is seen superior to the ventricles. Fig. 5 shows
the signal measured in three different voxels in the ventricles over
a period of 3 s (a typical volume time). The signals are also plotted
in the complex plane. We observe examples of both parallel and
orthogonal oscillations as well as circular motion, which is a com-
bination of the two pure patterns.

Fig. 6 shows absolute value noise spectra averaged over small
ROIs that include only the ventricles for two different subjects.
Spectra from ROIs in the slice superior to the ventricles (data not
shown) possess a similar pattern of peaks, but the intensity is
approximately one order of magnitude lower. This, together with
Fig. 4, shows that the ventricles and the basal parts of the brain
are the most important sources of cardiac-induced noise. There
are large individual variations in the pattern of harmonics in the
noise spectra.

The average whole-brain noise levels measured in the 3D exper-
iment are given in Table 1. The noise levels are given in units of the
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thermal noise. The ratio of signal to thermal noise was approxi-
mately 100. The volume fraction of the image with tSD higher than
1.5 times the thermal noise level is given in Table 2. Tuned and Lin-
ear sampling gives the best results by both criteria, with Centric
and Random performing significantly worse.

Fig. 7 shows noise maps for Subject 3. Noise is seen to propagate
from the ventricles and the basal parts of the brain into other parts
of the volume. Fig. 8 shows the noise level as a function of the po-
sition along the slow k-space axis. Random and Centric sampling
give high noise levels over the entire volume. Linear sampling
has a high noise level near the physical noise sources (ventricles
and basal parts of the brain). Segmented sampling propagates the
noise to the superior parts of the brain. Tuned sampling gives less
noise than Linear near the noise sources, and a comparable noise
level in superior brain regions that do not contain physical noise
sources. There are large individual variations in the noise level
across the subjects. Centric and Random sampling does not per-
form well neither in ventricles nor in tissue. Segmented sampling
performs well in the ventricles but the noise appears at other loca-
tions in the volume. This is not a desired feature.
Table 1
Measured noise (tSD) in units of the thermal noise level. Normalized noise is the noise divid
the comparison and ranking of the schemes.

Subject Tvol (s) Slow dir. Noise

Linear Centric Segmented Rando

1 2.24 FH 1.95 2.39 2.01 2.17
2 2.24 FH 1.50 1.87 1.56 2.01
3 2.24 FH 1.81 2.05 1.66 2.22
4 2.24 FH 1.45 1.69 1.40 1.71
Mean 1.68 2.00 1.66 2.03
SD 0.24 0.30 0.26 0.23

2 2.24 LR 1.60 1.72 1.58 1.78

2 4.00 FH 1.68 1.59 1.61 1.82
5 4.00 FH 1.77 1.97 1.76 1.78
Mean 1.73 1.78 1.69 1.80
SD 0.06 0.27 0.10 0.03
5. Discussion and conclusions

The preferable sampling schemes are Linear and Tuned. Seg-
mented sampling has comparable performance in terms of total
noise and noise affected fraction, but the ghosting pattern is unpre-
dictable. Centric and Random sampling yield very poor results.

The signal behavior observed in the 3D measurements is largely
consistent with the numerical simulations shown in Fig. 3. The
exception is Centric sampling which gives slightly higher noise lev-
els than expected. The noise stems mainly from the ventricles and
the basal parts of the brain.

In Fig. 6 we observe well-defined peaks in the noise spectra cor-
responding to the heartbeat frequency and its harmonics. This sug-
gests that the assumption of a periodic signal is reasonable.
However, there are individual differences. In Fig. 6a the peaks are
wider than in Fig. 6b. Wider peaks indicate larger deviations from
perfect periodicity. Fig. 4 shows that the noise generation is local-
ized to specific regions in the brain. This justifies our choice of a
localized spatial function in the numerical simulations.

The model that we have introduced is versatile. Including noise
with a different periodicity, such as respiration or quasiperiodic
resting brain fluctuations, is trivial. One limiting assumption,
however, is separability. If this is not realistic we can introduce
space-dependent Fourier components, Gn(z), in Eq. (5). Another
refinement is to allow deviations from perfect periodicity. This
complicates the analytical treatment, but numerical simulations
are still straightforward. Although this paper focuses on brain
imaging, the conclusions apply to 3D imaging of any anatomical
region that is affected by cardiac-induced physiological noise.

Deviations from perfect periodicity have two effects. Firstly, the
evolution of t0 will be more complicated than stated by Eq. (4), and
the succession of reconstructed images will become less predict-
able. Secondly, the shape of the traces will become somewhat al-
tered (in particular for Segmented sampling). Qualitatively,
however, our simulations capture the essential features of the sam-
pling effects.

In this work we have considered a 1D k-space excursion. Some
generalizations applicable to a 2D excursion can be drawn. For
Random sampling, the generalization is obvious. For Centric sam-
pling, the 2D version amounts to acquiring k and �k as closely as
possible in time. Tuned sampling in 2D implies acquiring k and
�k with a delay equal to Tphys/2. The symmetry properties of Cen-
tric and Tuned (discussed in Theory) apply equally well to a 2D k-
space excursion. Hence, Centric will still suppress orthogonal noise
and Tuned will suppress parallel noise. In the measurements, we
employed standard Cartesian EPI without parallel acceleration.
Modifications such as spiral acquisition or parallel acceleration of
ed by the noise averaged over all schemes for a given subject. This quantity facilitates

Normalized noise

m Tuned Linear Centric Segmented Random Tuned

1.81 0.95 1.16 0.97 1.05 0.88
1.49 0.89 1.11 0.93 1.19 0.88
1.76 0.95 1.08 0.87 1.17 0.93
1.39 0.95 1.10 0.91 1.12 0.91
1.61 0.94 1.11 0.92 1.13 0.90
0.20 0.03 0.03 0.04 0.06 0.02

1.60 0.97 1.04 0.96 1.07 0.96

1.76 0.99 0.94 0.95 1.07 1.04
1.61 1.00 1.11 0.99 1.00 0.90
1.69 0.99 1.02 0.97 1.04 0.97
0.11 0.00 0.12 0.03 0.05 0.10



Table 2
Noisy volume fraction defined as the fraction of the imaged volume that has a noise level higher than 1.5 times the thermal noise level.

Subject Tvol (s) Slow dir. Noisy volume fraction Normalized noisy volume fraction

Linear Centric Segmented Random Tuned Linear Centric Segmented Random Tuned

1 2.24 FH 0.49 0.61 0.52 0.61 0.43 0.92 1.14 0.98 1.15 0.82
2 2.24 FH 0.36 0.51 0.40 0.58 0.35 0.81 1.15 0.90 1.32 0.80
3 2.24 FH 0.47 0.55 0.42 0.63 0.47 0.93 1.08 0.82 1.25 0.92
4 2.24 FH 0.32 0.43 0.29 0.49 0.30 0.87 1.18 0.80 1.33 0.82
Mean 0.41 0.52 0.41 0.58 0.39 0.88 1.14 0.88 1.26 0.84
SD 0.08 0.07 0.09 0.06 0.08 0.05 0.04 0.08 0.09 0.06

2 2.24 LR 0.35 0.40 0.34 0.47 0.35 0.91 1.05 0.90 1.24 0.91

2 4.00 FH 0.41 0.39 0.40 0.50 0.45 0.96 0.91 0.92 1.17 1.04
5 4.00 FH 0.46 0.54 0.47 0.49 0.40 0.98 1.14 0.99 1.05 0.85
Mean 0.44 0.47 0.43 0.50 0.42 0.97 1.02 0.96 1.11 0.94
SD 0.04 0.10 0.05 0.01 0.03 0.02 0.16 0.05 0.09 0.14
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the acquisition of each k-space plane, does not affect our argu-
ments since the problem remains effectively one-dimensional.
Including parallel imaging in the slow k-space direction, however,
would require a more complicated model than the present 1D
version.

We have shown that it is essential to consider physiological
noise when choosing the sampling scheme. Another way to reduce
the noise would be to choose the volume time such that the frac-
tion Tvol/Tphys is approximately integer. Then, according to Eq. (4),
the time offset t0 would not change much from one volume to
the next (except for Random sampling, where t0 is irrelevant).
Assuming perfect periodicity, this means that the acquisition of
consecutive volumes start at the same instant in the heart cycle,
hence giving only minor changes from one volume to the next.
The physiological noise would then not be rendered noise-like
but rather as a slow signal drift that can be removed by detrending.
With ECG-triggering the change from one volume to the next could
be kept even smaller. If Tvol in the 3D acquisitions were made
shorter, the propagation of noise from the ventricles and the basal
parts of the brain would be reduced. Imaging techniques that give
whole-brain volume times shorter than Tphys could be combined
with triggering to reduce the physiological noise significantly.

The physiological noise is proportional to the image signal [6].
Therefore, the impact of physiological noise relative to thermal
noise can be reduced by acquiring smaller voxels [12]. If high spa-
tial resolution is not needed, one can improve the time-course SNR
by acquiring images at high resolution, prior to spatial smoothing
[13]. For 3D fMRI sequences that spend all available time between
the RF pulses for readout, parallel acceleration reduces the volume
time. This reduces the signal intensity, and thereby the ratio of
physiological to thermal noise Increased statistical power is then
gained due to an increased number of observations within a given
time interval. This has been demonstrated for 3D PRESTO (princi-
ple of echo shifting with a train of observations) [22] and balanced
SSFP (steady-state free precession) [23].

Our simulations (Fig. 3) do not include thermal noise because it
would merely appear as a constant offset after averaging. It is
interesting, however, to consider the ratio between physiological
and thermal noise. Triantafyllou et al. [12] showed that this ratio
depended strongly on the field strength. For 3 mm isotropic voxel
and 2D imaging the ratio was 0.61, 0.89 and 2.23 at 1.5T, 3T and 7T
respectively. For 3D acquisitions, the effect of physiological noise is
higher, although suppression of instabilities of the transverse stea-
dy-state magnetization by proper RF-spoiling can improve the per-
formance of 3D imaging [24].

Random sampling was shown to yield a very high noise level.
This has consequences for compressed sensing where k-space
planes are chosen randomly. With a static image the readout order
of the randomly chosen k-space lines does not matter. In the pres-
ence of physiological noise, however, they should be sorted in
ascending or descending order to resemble linear sampling. An-
other readout strategy that would be efficient in the presence of
parallel noise is a hybrid between Tuned and Random sampling,
where one half of the k-space positions are chosen randomly and
the negative positions are acquired with a delay of Tphys/2. This
would attenuate the physiological noise and, as shown in Appendix
A, reduce the spatial correlations.

Tuned sampling may have a potential for reducing physiological
noise. In the simulations shown in Fig. 3, however, the noise can-
cellation is not perfect. A fluctuating DC component persists. The
reason is that the central k-space element does not have a conju-
gate partner. This can be overcome if we read out the central line
twice with the required time separation and put in the average
of these lines at the center of k-space. We did not implement this
in the simulations since it was not implemented in the measure-
ments. In human brain measurements, there are additional factors
that limit the noise-cancellation capabilities of the Tuned sampling
scheme. Firstly, the physiological noise signal contains orthogonal
as well as parallel noise. Secondly, the noise spectra (Fig. 6) may
have significant contributions from higher harmonics that will
break the required g(t + Tphys/2) = �g(t) symmetry. In addition, in
this work, we assumed that Tphys = 1 s for all volunteers. Numerical
simulations (not shown) indicate that the method is reasonably ro-
bust with respect to variations up to 10%. Improved results might
be obtained by adapting the sequence to the individual heart rate.
Tuned sampling cannot be expected to work well for arrhythmic
patients. In Fig. 1 it is seen that the Tuned sampling scheme has
a mismatch in the outer parts of k-space. This is a consequence
of the fact that the total number of k-space planes is not divisible
by the number of planes in each branch. This does not have serious
consequences. In general, for all sampling schemes, it is the read-
out of the central portion of k-space that is important.

Tuned sampling has a possible application in block-design,
high-resolution fMRI. Here the symmetry in Eq. (11) is approxi-
mately fulfilled and the signal direction is parallel. In a high reso-
lution acquisition, where the volume time is longer than
practical paradigm periods, we could apply Tuned acquisition with
a separation time between �k and k equal to half the period of the
paradigm. This would render the static object in the parallel part of
the reconstructed image and the activation in the orthogonal part.
This, however, was beyond the scope of the present paper.

In conclusion, we have suggested a mathematical model to de-
scribe physiological noise. We have shown theoretically as well as
experimentally that the manifestations of physiological noise de-
pend strongly on the sampling scheme. Noise components that
are reconstructed in phase with the signal (parallel) have a much
larger effect than components that are reconstructed 90� out of
phase (orthogonal). This is a key to understanding the performance
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difference of various sampling schemes. Our analysis indicates that
Tuned or Linear acquisition is preferable to Centric, Segmented and
Random.

Appendix A

We present some analytic results for the reconstructed physio-
logic noise signal. We use the symmetric Fourier convention. In
continuous form it reads
HðkÞ ¼ FfhðzÞg ¼
Z 1

�1
dzhðzÞe�2pikz;

hðzÞ ¼ F�1fHðkÞg ¼
Z 1

�1
dkHðkÞe2pikz;

ð13Þ

where F denotes Fourier transformation. With this definition trans-
lations and phase factors have the following effects

FfhðzÞe2piaxg ¼ Hðk� aÞ;
Ffhðz� fÞg ¼ e�2pifkHðkÞ;
F�1fHðkÞe2piakg ¼ hðzþ aÞ;
F�1fHðk� jÞg ¼ e2pijzhðzÞ:

ð14Þ

To obtain analytic expressions for the physiological noise, we can
assume a simple linear phase variation,

uðzÞ ¼ 2pjz; ð15Þ

This assumption is adequate for long-scale phase variations that can
be linearized over the field of view (FOV). In this case the general
expression, Eq. (7), simplifies to

PSðk; t0Þ ¼ Hðk� jÞ
X1

n¼�1
Gn exp

2pin
Tphys

ðtðkÞ � t0Þ
� �

; ð16Þ

where H(k) is the Fourier transform of h(z).

A.1. Linear sampling

With Linear sampling the relationship between sampling time
and k-space position is given by

tðkÞ ¼ Tvol
L
N

k; ð17Þ

where L is the FOV and N is the number of samples (hence the inter-
val that is spanned in k-space equals N/L). If we introduce

Dz � L=N and f � DzTvol

Tphys
; ð18Þ
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we obtain the following expression for the sampled k-space signal

PSðk; t0Þ ¼ Hðk� jÞ
X1

n¼�1
Gn expð2pinfkÞ exp �2pin

Tphys
t0

� �
: ð19Þ

The inverse Fourier transform of this expression gives the physio-
logical noise signal in image space after sampling and
reconstruction,

pSðz; t0Þ ¼
X1

n¼�1
Gnhðzþ nfÞ exp½2pijðzþ nfÞ�

� exp �2pin
Tphys

t0

� �
: ð20Þ

In the Fourier transform we have assumed infinite integration lim-
its. This is an approximation. In Fig. 9 the analytical expression is
compared to the numerical result for two values of the matrix size.

As a special case we consider a parallel and harmonic oscillation
(Gn = 0 for jnj > 1), e.g. with G�1 = G1 = 1/2) (which yields
g(t) = cos(2pt/Tphys). We can then calculate the parallel and orthog-
onal parts of the reconstructed signal as

R½pSðz; t0Þ=e2pijz� ¼ 1
2
½hðzþ fÞ þ hðz� fÞ� cos½2pðt0=Tphys � jfÞ�

� hðzÞ cos½2pðt0=Tphys � jfÞ�;

J½pSðz; t0Þ=e2pijz� ¼ �1
2
½hðzþ fÞ � hðz� fÞ� sin½2pðt0=Tphys � jfÞ�

� �fh0ðzÞ sin½2pðt0=Tphys � jfÞ�;
ð21Þ
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Fig. 9. Finite size effects illustrated with the parallel part of the reconstructed noise signa
Fourier component n = 2, t0 = 0.45 s, Tphys = 1 s, Tvol = 2.24 s, Nseg = 4 and j = 1/200. The Seg
the Nseg k-space segments.
where the approximation is valid if the function h varies slowly on
the length scale f. Note that the reconstructed physiological noise is
split between the parallel and orthogonal parts of the image even if
the physiological noise itself is parallel.

If t0 does not change much from one volume to the next the
physiological noise will be manifest as a slow signal drift. If, how-
ever, all values of t0 are equally probable we find parallel and
orthogonal temporal standard deviation, tSD, given by

R½tSDðzÞ=e2pijz� � jhðzÞj=
ffiffiffi
2
p

;

J½tSDðzÞ=e2pijz� � fjh0ðzÞj=
ffiffiffi
2
p

:
ð22Þ

This equation assumes a parallel and harmonic oscillation. With an
orthogonal harmonic oscillation the real and imaginary parts of Eq.
(22) are interchanged. As the resolution increases the imaginary
part decreases, since f / Dz.

A.2. Segmented sampling

With Segmented sampling we have

tmðkÞ ¼
TvolL
NsegN

kþ Tvol

Nseg
m� Nseg � 1

2

� �
;

m ¼ 0; . . . ;Nseg � 1; ð23Þ

where Nseg is the number of segments. Each segment can be consid-
ered as a Linear, undersampled measurement which corresponds to
a reduced FOV

eL � L=Nseg: ð24Þ
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mented scheme converges more slowly because the N samples are divided between
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To find the total signal we sum the contributions from all segments.
We must then implement the fold-in effect that corresponds to the
reduced FOV. We must also account for the translation of the
sampling grid for the individual segments. In general, if the Fourier
transform F(k) of a function f(z) is sampled at a grid with k-space
resolution 1=eL and with a grid displacement of k0, then the recon-
structed function is given by

X1
p¼�1

expð2pik0
eLpÞf ðz� peLÞ: ð25Þ

This expression is valid for a k-space grid of infinite extension. The
k-space displacement for segments m is given by k0(m) = m/L, hence
k0ðmÞeL ¼ m=Nseg. Combining this with Eqs. (20), (23) and (25) we
can write

pSðz; t0Þ ¼
1

Nseg

X1
n¼�1

XNseg�1

m¼0

X1
p¼�1

Gnhðzþn~f� peLÞ exp½2piaðn;m;pÞ�;

aðn;m; pÞ �jðzþ n~f� peLÞ � n
Tphys

t0

þ n
~f
Dz

m� Nseg � 1
2

� �
þmp=Nseg;

~f �f=Nseg: ð26Þ

The factor 1/Nseg in the sum is a Jacobian. If there is no fold-in in the
original image (which was implicitly assumed when we discussed
Linear sampling) the summation limits for p should be approxi-
mately �Nseg/2. If we carry out the summation over m we find

pSðz; t0Þ ¼
1

Nseg

X1
n¼�1

X1
p¼�1

Gnhðzþ n~f� peLÞ
exp½2pibðn;pÞ�1� e2piðn~f=Dzþp=NsegÞNseg

1� e2piðn~f=Dzþp=NsegÞ
;

bðn; pÞ � jðzþ n~f� peLÞ � n
Tphys

t0 � n
~f
Dz

Nseg � 1
2

� �
:

ð27Þ

The expression for the temporal standard deviation is compli-
cated, but we note that each term in the sum oscillates harmoni-
cally as a function of t0. The parallel and orthogonal parts of the
signal are given by R½pSðz; t0Þ=e2pijz� and J½pSðz; t0Þ=e2pijz� respec-
tively. With Segmented sampling the noise may propagate from
the source to the rest of the volume in a complicated manner.
Fig. 9 shows the analytical expression and corresponding numeri-
cal results.

A.3. Random sampling

For Random sampling analytical solutions cannot be found
since the noise signal is rendered in a random manner. We can,
however, describe the character of the signal and find its averaged
strength. Without loss of generality, we can assume that u(z) = 0.
Fourier component number n can then be written

pðnÞðz; t; t0Þ / exp 2pin
t � t0

Tphys

� �
hðzÞ: ð28Þ

The k-space representation is

PðnÞðk; t; t0Þ / exp 2pin
t � t0

Tphys

� �
HðkÞ: ð29Þ

Since the k-space positions are acquired at random time points the
sampled function, PðnÞS ðKÞ, is effectively the product of H(k) and a
random phase. The Fourier transform of a random phase vector is
a vector of complex Random numbers. This means that the
reconstructed signal, pðnÞS ðKÞ, will be the convolution of a sequence
of random numbers and the function h(z). See Fig. 3 for an example
where h(z) is a Gaussian. We see that Random sampling reduces the
spatial correlations in the noise.

On average the physiological noise signal is distributed evenly
over the FOV and equally between the real and imaginary parts.
The temporal standard deviation will be equal to the spatial stan-
dard deviation. Hence it can be calculated from

R½tSD�2 þ J½tSD�2 ¼ 1
L

Z L=2

�L=2
dz pðnÞs ðzÞ
�� ��2 ¼ 1

L

Z K=2

�K=2
dk PðnÞs ðkÞ
��� ���2

¼ 1
L

Z K=2

�K=2
dkjHðkÞj2 ¼ 1

L

Z L=2

�L=2
dzhðzÞ2;

K � N=L; and R½tSD�2 ¼ J½tSD�2: ð30Þ

Here we have used the unitarity of the Fourier transform (Parseval’s
theorem). For simplicity we have expressed the equations in inte-
gral rather than summation notation, although Random sampling
is only meaningful in the discrete case.
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